函数y=sin(wx+π/3)(w.0)在[π/4,π/2]上是减函数,求w
解析:∵函数y=sin(wx+π/3)(w>0)
∴函数y初相为第一象限角,离Y轴最近的极值点为最大值点
极大值点:wx+π/3=2kπ+π/2==>x=2kπ/w+π/(6w)
极小值点:wx+π/3=2kπ+3π/2==>x=2kπ/w+7π/(6w)
∵在[π/4,π/2]上是减函数
∴π/(6w)w>=2/3
7π/(6w)>=π/2==>w
函数y=sin(wx+π/3)(w.0)在[π/4,π/2]上是减函数,求w
解析:∵函数y=sin(wx+π/3)(w>0)
∴函数y初相为第一象限角,离Y轴最近的极值点为最大值点
极大值点:wx+π/3=2kπ+π/2==>x=2kπ/w+π/(6w)
极小值点:wx+π/3=2kπ+3π/2==>x=2kπ/w+7π/(6w)
∵在[π/4,π/2]上是减函数
∴π/(6w)w>=2/3
7π/(6w)>=π/2==>w