∵抛物线y = f(x)的对称轴为直线 x - 1/2 = 0
f[log2(a)]=b 言下之意
log2(a)=0 或 1
∴a =2 a = 1 (舍去)
因此,根据log2[f(a)] =2
可知: b = 2
设log2(x) = t
则:x = 2^t
∴f(t ) = (2^t)² - 2^t + 2
= (2^t - 1/2 )² + 7/4
∴当t = -1时,有最小值 7/4
∵抛物线y = f(x)的对称轴为直线 x - 1/2 = 0
f[log2(a)]=b 言下之意
log2(a)=0 或 1
∴a =2 a = 1 (舍去)
因此,根据log2[f(a)] =2
可知: b = 2
设log2(x) = t
则:x = 2^t
∴f(t ) = (2^t)² - 2^t + 2
= (2^t - 1/2 )² + 7/4
∴当t = -1时,有最小值 7/4