平面上有n(n>3=3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能做出n(n-1)(n-2)/6个不同的三角形
分析:
当仅有3个点时,可作(1)个三角形
当有4个点时,可作(4)个三角形
当有5个点时,可作(10)个三角形
当有6个点时,可作(20)个三角形.
平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法,取第三个点C有(n-2)种取法,所以一共有n(n-1)(n-2)个三角形,但△ABC、△ACB、△BAC、△BCA、△CBA、△CAB是同一个三角形,故应除以6,即.n(n-1)(n-2)/6
①n=3时,可作1个,1=3(3-1)(3-2)/6
②n=4时,可作4个,6=4(4-1)(4-2)/6
③当n≥3时,能作n(n-1)(n-2)/6个三角形