光靠系数行列式为0得到的λ无法直接说明何时无解,何时有无穷多的解.
这类题应该用增广矩阵来做:
对方程组的增广矩阵进行初等行变换,化为行阶梯形.
从最后一行可以看出,
当-λ(3+λ)=0,而(λ+3)(1-λ)≠0时无解,此时λ=0;
当-λ(3+λ)=0,且(λ+3)(1-λ)=0时有无穷多解,此时.
代入λ=-3并根据图中所得阶梯形矩阵,求出
x=t-1,y=t-2,z=t,t为任意实数,即为通解.
增广矩阵的变换过程附图(点击可放大):
光靠系数行列式为0得到的λ无法直接说明何时无解,何时有无穷多的解.
这类题应该用增广矩阵来做:
对方程组的增广矩阵进行初等行变换,化为行阶梯形.
从最后一行可以看出,
当-λ(3+λ)=0,而(λ+3)(1-λ)≠0时无解,此时λ=0;
当-λ(3+λ)=0,且(λ+3)(1-λ)=0时有无穷多解,此时.
代入λ=-3并根据图中所得阶梯形矩阵,求出
x=t-1,y=t-2,z=t,t为任意实数,即为通解.
增广矩阵的变换过程附图(点击可放大):