解题思路:(Ⅰ)由回答对的人数:每组的人数=回答正确的概率,分别可求得要求的值;
(Ⅱ)由分层抽样按比例抽取的特点可得各组的人数;
(Ⅲ)记抽取的6人中,第2组的记为a1,a2,第3组的记为b1,b2,b3,第4组的记为c,列举可得从6名学生中任取2名的所有可能的情况,以及其中第2组至少有1人的情况种数,由古典概型可得概率.
(Ⅰ)第1组人数5÷0.5=10,所以n=10÷0.1=100,…(1分)
第2组人数100×0.2=20,所以a=20×0.9=18,…(2分)
第3组人数100×0.3=30,所以x=27÷30=0.9,…(3分)
第4组人数100×0.25=25,所以b=25×0.36=9…(4分)
第5组人数100×0.15=15,所以y=3÷15=0.2.…(5分)
(Ⅱ)第2,3,4组回答正确的人的比为18:27:9=2:3:1,
所以第2,3,4组每组应各依次抽取2人,3人,1人.…(8分)
(Ⅲ)记抽取的6人中,第2组的记为a1,a2,第3组的记为b1,b2,b3,第4组的记为c,
则从6名学生中任取2名的所有可能的情况有15种,
它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),
(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),
(b2,b3),(b2,c),(b3,c).…(10分)
其中第2组至少有1人的情况有9种,
它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),
(a2,b2),(a2,b3),(a2,c).…(12分)
故所求概率为[9/15=
3
5].…(13分)
点评:
本题考点: 列举法计算基本事件数及事件发生的概率;频率分布直方图;用样本的频率分布估计总体分布.
考点点评: 本题考查列举法求解古典概型的概率,涉及频率分布表的应用和分层抽样的特点,属基础题.