∵△ABC是等边三角形,AB=BC=AC=2
又D为BC的中点,
∴BD=BC/2
=1
又DE⊥AB
∴在RT△BED中,∠BDE=30°
∴BE=BD/2
=1/2
∴AE=AB-BE
=2-(1/2)
=3/2
又△AFE是RT△
∴AF=AE/2
=(3/2)/2
=3/4
∵△ABC是等边三角形,AB=BC=AC=2
又D为BC的中点,
∴BD=BC/2
=1
又DE⊥AB
∴在RT△BED中,∠BDE=30°
∴BE=BD/2
=1/2
∴AE=AB-BE
=2-(1/2)
=3/2
又△AFE是RT△
∴AF=AE/2
=(3/2)/2
=3/4