因(a-b)²+(a-c)²+(b-c)²≥0
当且仅当a=b=c时,等号成立
所以a²-2ab+b²+a²-2ac+c²+b²-2bc+c²≥0
即2(a²+b²+c²)≥2(ab+ac+bc)
所以a²+b²+c²≥ab+ac+bc
得证