f(x) = x² - 2x = (x - 1)² - 1
1 < x < 6
0 < x - 1 < 5
0 < (x - 1)² < 25
-1 < f(x) < 24
f(x) = x - 1 + √(x + 1) = [√(x + 1) + 1/2]² - 9/4
√(x + 1) + 1/2 ≥ 1/2
[√(x + 1) + 1/2]² ≥ 1/4
f(x) ≥ -2
f(x)=x²/x²+1+x+1/x²+2
请明确一下分子分母
f(x) = x² - 2x = (x - 1)² - 1
1 < x < 6
0 < x - 1 < 5
0 < (x - 1)² < 25
-1 < f(x) < 24
f(x) = x - 1 + √(x + 1) = [√(x + 1) + 1/2]² - 9/4
√(x + 1) + 1/2 ≥ 1/2
[√(x + 1) + 1/2]² ≥ 1/4
f(x) ≥ -2
f(x)=x²/x²+1+x+1/x²+2
请明确一下分子分母