解题思路:(1)易证BD=AD,可得△ADC≌△BDC,即可求得∠ACD=∠BCD=45°即可解题.
(2)连接MC,易证△MCD为等边三角形,即可证明△BDC≌△EMC即可解题.
证明:(1)∵AC=BC,
∴∠CBA=∠CAB,
又∵∠ACB=90°,
∴∠CBA=∠CAB=45°,
又∵∠CAD=∠CBD=15°,
∴∠DBA=∠DAB=30°,
∴∠BDE=30°+30°=60°,
∵AC=BC,∠CAD=∠CBD=15°,
∴BD=AD,
在△ADC和△BDC中,
BC=AC
∠CBD=∠CAD
BD=AD,
∴△ADC≌△BDC(SAS),
∴∠ACD=∠BCD=45°,
∴∠CDE=60°,
∵∠CDE=∠BDE=60°,
∴DE平分∠BDC;
(2)ME=BD,
连接MC,
∵DC=DM,∠CDE=60°,
∴△MCD为等边三角形,
∴CM=CD,
∵EC=CA,∠EMC=120°,
∴∠ECM=∠BCD=45°
在△BDC和△EMC中,
DC=CM
∠ECM=∠BCD
CE=BC,
∴△BDC≌△EMC(SAS),
∴ME=BD.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADC≌△BDC是解题的关键.