2sin²x+√3cosx+1=0
2-2cos²x+√3cosx+1=0
2cos²x-√3cosx-3=0
(cosx-√3)(2cosx+√3)=0
解得:
cosx=√3,或cosx=-√3/2
而|cosx|≤1所以舍去cosx=√3
cosx=-√3/2
所以
x=5π/6+2kπ或x=7π/6+2kπ ( k∈Z)
2sin²x+√3cosx+1=0
2-2cos²x+√3cosx+1=0
2cos²x-√3cosx-3=0
(cosx-√3)(2cosx+√3)=0
解得:
cosx=√3,或cosx=-√3/2
而|cosx|≤1所以舍去cosx=√3
cosx=-√3/2
所以
x=5π/6+2kπ或x=7π/6+2kπ ( k∈Z)