(x^2+x)^(1/2)-(x^2-x)^(1/2)
=[(x²+x)-(x²-x)]/[(x^2+x)^(1/2)+(x^2-x)^(1/2)]
=2x/[(x^2+x)^(1/2)+(x^2-x)^(1/2)]
=2/[(1+1/x)^(1/2)+(1-1/x)^(1/2)]
lim{(x^2+x)^(1/2)+(x^2-x)^(1/2)}
=lim 2/[(1+1/x)^(1/2)+(1-1/x)^(1/2)]
=2/(1+1)
=1
(x^2+x)^(1/2)-(x^2-x)^(1/2)
=[(x²+x)-(x²-x)]/[(x^2+x)^(1/2)+(x^2-x)^(1/2)]
=2x/[(x^2+x)^(1/2)+(x^2-x)^(1/2)]
=2/[(1+1/x)^(1/2)+(1-1/x)^(1/2)]
lim{(x^2+x)^(1/2)+(x^2-x)^(1/2)}
=lim 2/[(1+1/x)^(1/2)+(1-1/x)^(1/2)]
=2/(1+1)
=1