用洛必达法则求极限 1,lim(x→0)arctanx-x/sinx^3 2,lim(x→0)lncosax/lncos

1个回答

  • 用洛必达法则求极限

    1,lim(x→0)(arctanx-x)/sinx³

    x→0lim(arctanx-x)/sinx³=x→0lim[1/(1+x²)-1]/(3x²cosx³)=x→0lim[-x²/(1+x²)(3x²cosx³)]

    =x→0lim{-1/[3(1+x²)cosx³]}=-1/3;

    如果原题是:x→0lim(arctanx-x)/sin³x,则:

    x→0lim(arctanx-x)/sin³x=x→0lim[1/(1+x²)-1]/(3sin²xcosx)=x→0lim{-x²/[3(1+x²)sin²xcosx]}

    =x→0lim{-1/[3(1+x²)cosx]}=-1/3;

    2,lim(x→0)lncosax/lncosbx

    x→0lim[ln(cos(ax)]/[lncos(bx)]=x→0lim[-asin(ax)/cos(ax)]/[-bsin(bx)/cos(bx)]

    =x→0lim[atan(ax)/btan(bx)]=x→0lim(a²x)/(b²x)]=a²/b²;

    3,lim(x→0)(a^x-x^a)/(x-a)(a>0,a不等于1)

    x→0lim(a^x-x^a)/(x-a)=-1/a.