A+B=π-π/4=3π/4
tanAtanB
=tanA*(tan3π/4-tanA)/(1+tan3π/4tanA)
=tanA*(-1-tanA)/(1-tanA)=6
解得:tanA=3或2
a>b故tanA=3 tanB=2
a/c=sinA/sinC
b/c=sinB/sinC
得a=6/√10 b=4/√5
面积为1/2absinC=1/2*6/√10*4/√5*1/√2=6/5=1.2
A+B=π-π/4=3π/4
tanAtanB
=tanA*(tan3π/4-tanA)/(1+tan3π/4tanA)
=tanA*(-1-tanA)/(1-tanA)=6
解得:tanA=3或2
a>b故tanA=3 tanB=2
a/c=sinA/sinC
b/c=sinB/sinC
得a=6/√10 b=4/√5
面积为1/2absinC=1/2*6/√10*4/√5*1/√2=6/5=1.2