证明:
∵AB=AC
∴∠ABC=∠ACB
∵DF垂直平分AB
∴AF=BF
∴∠BAF=∠ABC
∵EG垂直平分AC
∴AG=CG
∴∠CAG=∠ACB
∴∠BAF=∠CAG
∵∠BAG=∠CAF-∠BAC,∠CAF=∠BAF-∠BAC
∴∠BAG=∠CAF
∵∠ABG=180-∠ABC,∠ACF=180-∠ACB
∴∠ABG=∠ACF
∴△ABG≌△ACF (ASA)
∴AG=AF
证明:
∵AB=AC
∴∠ABC=∠ACB
∵DF垂直平分AB
∴AF=BF
∴∠BAF=∠ABC
∵EG垂直平分AC
∴AG=CG
∴∠CAG=∠ACB
∴∠BAF=∠CAG
∵∠BAG=∠CAF-∠BAC,∠CAF=∠BAF-∠BAC
∴∠BAG=∠CAF
∵∠ABG=180-∠ABC,∠ACF=180-∠ACB
∴∠ABG=∠ACF
∴△ABG≌△ACF (ASA)
∴AG=AF