6cos(2kπ+π/3)-2sin(2kπ+π/6)+3tan(2kπ) k€Z
2个回答
6cos(2kπ+π/3)-2sin(2kπ+π/6)+3tan(2kπ) k€Z
=6cos(π/3)-2sin(π/6)+3tan(0)
=3-1+0=2
相关问题
函数y=2sin(2x−π6)的单调递增区间是[kπ-[π/6],kπ+[π/3]],k∈z[kπ-[π/6],kπ+[
函数y=3cos(2x-[π/3]),x∈R的减区间为[kπ+π6,kπ+2π3](k∈z)[kπ+π6,kπ+2π3]
化简[sin(k-5π)cos(-2/π-k)cos(8π-k)]/[sin(k-3π/2)sin(-k-4π)]
sin(2kπ-α)=cos(2kπ-α)=tan(2kπ-α)=
两道关于正切函数的不等式问题-π/2+2kπ≤2x-π/6≤π/2+2kπ(k∈Z) π/2+2kπ≤2x-π/6≤3π
cot(-kπ+α)等于什么求证sin(π/2 +α)-cos(3π/2 -α)/tan(2kπ -α)+cot(-kπ
3sinβ=sin(2α+β),α≠2kπ+π/2 ,α+β≠kπ+π/2 (k∈z)求证tan(α+β)=2tanα
函数y=根号下(1-2sinx)的定义域为2kπ-7π/6,2kπ+π/6] k∈z ,那么2kπ-7π/6,2kπ+π
(1)求{x|x=cos(kπ/2),k∈Z}∩{x|x=sin(2kπ±π/2),k∈Z}
函数y=2sin(2x-[π/3])的递增区间为[kπ−π12,kπ+5π12],k∈Z[kπ−π12,kπ+5π12]