把ijpk分别改为efgh,你本图中的efghlmno就不需要了(3)证明:∵四边形ABCD是平行四边形,
∴AB=CD,
即以ABCD为边的正方形的对角线也相等,
∵点E、G是上述两个正方形的对角线的交点,
∴AH=DH,
易知∠HDG=∠HDA+∠ADC+∠CDG+45°=90°+∠ADC,
∵平行四边形ABCD中,有∠BAD=180°-∠ADC,
∴∠HAE=360°-(∠HAD+∠BAD+∠BAE)=360°-[45°+(180°-∠ADC)+45°]=90°+∠ADC,
∴∠HDG=∠HAE,
∴△HDG≌△HAE,
∴HG=HE且∠EHA=∠GHD,
同理可证HE=EF=FG,
∴四边形EFGH是菱形,
∵点H是正方形的对角线的交点,
∴∠AHD=90°,即∠AHG+∠GHD=90°,
∴∠EHG=90°,
∴四边形EFGH是正方形.