解题思路:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
(1)因方程移项可利用平方差公式分解,故用因式分解法;
(2)因方程系数特殊,可以用公式法求解;
(3)首先移项把常数项移到等号右边,方程两边同时加上一次项系数一半的平方,则左边是完全平方式,右边是常数,即可求解;
(4)因方程有相同的部分可以用换元法代换,故用换元法求解.
(1)将方程(3x-1)2=(x+1)2移项得,
(3x-1)2-(x+1)2=0,
∴(3x-1+x+1)(3x-1-x-1)=0,
∴4x(2x-2)=0,
∴x(x-1)=0,
解得x1=0,x2=1.
(2)∵2x2+x-[1/2]=0,
可得,a=2,b=1,c=[1/2],
∴x=-[1/4]±
5
4.
(3)∵x2-4x+1=0,
∴(x-2)2=3,
解得x1=2+
3,x2=2-
3.
(4)设x2+x=y,则y2+y=6,y1=-3,y2=2,
则x2+x=-3无解,
∴x2+x=2,
解得x1=-2,x2=1.
点评:
本题考点: 解一元二次方程-配方法;解一元二次方程-因式分解法;换元法解一元二次方程.
考点点评: 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法,要会灵活运用,当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.