已知a≠b,且a²=3a+1,b²=3b+1,求b²/a+a²/b的值.
依题意设a、b为一元二次方程x²=3x+1,即x²-3x-1=0的两个根,由韦达定理,得:
a+b=3
ab=-1
可以将a²=3a+1,b²=3b+1代入下式,得:
b²/a+a²/b
=(3b+1)/a+(3a+1)/b
=[b(3b+1)+a(3a+1)]/ab
=[3(a²+b²)+(a+b)]/ab
=[3(3a+1+3b+1)+(a+b)]/ab
=(10a+10b+6)/ab
=[10(a+b)+6]/ab
=(30+6)/(-1)
=-36