交点横坐标为x1,x2
x1+x2=(2n+1)/(n^2+n)
x1x2=1/(n^2+n)
AnBn^2=(x1-x2)^2=(x1+x2)^2-4x1x2=(2n+1)^2/(n^2+n)^2-4/(n^2+n)=1/(n^2+n)^2
所以有AnBn=1/(n^2+n)=1/n-1/(n+1)
|A1B1|+..|A2010B2010|=1/1-1/2011=2010/2011
交点横坐标为x1,x2
x1+x2=(2n+1)/(n^2+n)
x1x2=1/(n^2+n)
AnBn^2=(x1-x2)^2=(x1+x2)^2-4x1x2=(2n+1)^2/(n^2+n)^2-4/(n^2+n)=1/(n^2+n)^2
所以有AnBn=1/(n^2+n)=1/n-1/(n+1)
|A1B1|+..|A2010B2010|=1/1-1/2011=2010/2011