证:连接AF
∵Rt△ABC中,∠BAC=90°
∴∠C+∠ABC=90°(直角三角形两锐角互余)
∵AD⊥BC
∴Rt△ADB中,∠ADB=90°
∴∠C+∠ABC=90°
∴∠C=∠BAD(同角的余角相等)
∵EF⊥BC
∴∠BAC=∠EFB=90°
在△ABE与△FBE中
∠1=∠2
∠BAE=∠BFE
BE=BE
∴△ABE≌△FBE(AAS)
∴AB=FB(全等三角对应边相等)
∴∠BAF=∠BFA
∵∠BAD+∠FAD=∠BAF,∠C+∠CAF=∠BFA
∴∠BAD+∠FAD=∠C+∠CAF
∴∠DAF=∠MAF
即AF平分∠DAM
∵DF⊥AD于D,FM⊥AC于M
∴FD=FM(角平分线上的点到角两边距离相等)