从1/x+1/(y+z)=1/2,
可得 (x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)] 1
同样可得:
1/y=(x+z)/[3(x+y+z)] 2
1/z=(x+y)/[4(x+y+z)] 3
由1,2,3得
6x(y+z)=4y(x+z)=3z(x+y)
由前两项得x/y=3/5;
由后两项得x/z=1/5;
则x:y:z=3:5:15;
令x=3t ,y=5t ,z=15t ,代入 1/x+1/y+z=1/2中得:t=23/30;
所以x=23/10 ,y=23/6 ,z=23/2