∵ AE/BE=DE/BC,∴ Rt△ADE∽△ECB,∠DAE=∠CEB;
∴ ∠AEB=180°-∠AED-∠CEB=180°-(∠AED+∠DAE)=180°-90°=90°;即 AE⊥BE;
再由 AE/BE=DE/BC=CE/BC 可知,Rt△AEB∽△EBC,∴∠EAB=∠CEB;
∴∠EAB=∠DAE,即 AE 平分∠BAD;
∵ AE/BE=DE/BC,∴ Rt△ADE∽△ECB,∠DAE=∠CEB;
∴ ∠AEB=180°-∠AED-∠CEB=180°-(∠AED+∠DAE)=180°-90°=90°;即 AE⊥BE;
再由 AE/BE=DE/BC=CE/BC 可知,Rt△AEB∽△EBC,∴∠EAB=∠CEB;
∴∠EAB=∠DAE,即 AE 平分∠BAD;