证明:
过E作EM⊥BC
∵BE平分∠ABC,∠A=90°,EM⊥BC
∴EA=EM,∠ABE=∠CBE,∠EMC=90°
∵AD⊥BC
∴∠CBE+∠BFD=90°
∵∠AFE=∠BFD
∴∠CBE+∠AFE=90°
又∵∠ABE+∠AEB=90°
∴∠AEB=∠AFE
∴AF=AE
∴AF=EM
∵FG//BC
∠AGF=∠C,∠AFG=∠ADC=90°
∴∠AFG=∠EMC =90°
∴△AFG≌△EMC
∴AG=EC
∴AG-EG=EC-EG
即:AE=CG
证明:
过E作EM⊥BC
∵BE平分∠ABC,∠A=90°,EM⊥BC
∴EA=EM,∠ABE=∠CBE,∠EMC=90°
∵AD⊥BC
∴∠CBE+∠BFD=90°
∵∠AFE=∠BFD
∴∠CBE+∠AFE=90°
又∵∠ABE+∠AEB=90°
∴∠AEB=∠AFE
∴AF=AE
∴AF=EM
∵FG//BC
∠AGF=∠C,∠AFG=∠ADC=90°
∴∠AFG=∠EMC =90°
∴△AFG≌△EMC
∴AG=EC
∴AG-EG=EC-EG
即:AE=CG