解题思路:游戏不公平,理由为:列出表格,得出所有等可能的情况数,找出数字之差大于0,等于0以及小于0时的情况数,求出甲乙两获胜的概率,即可判断不公平,若要使游戏公平,修改规则即可.
游戏不公平,理由为:
列表得:
1 2 3 4 5
1 (1,1) (2,1) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)
4 (1,4) (2,4) (3,4) (4,4) (5,4)所有等可能的情况有20种,其中摸出的两球所标数字之差(甲数字-乙数字)大于0的情况有10中,等于0的情况有4种,小于0的情况有6种,
则P甲获胜=[10/20]=[1/2],P乙获胜=[6/20]=[3/10],
∵[1/2]>[3/10],
∴游戏不公平;
若使游戏公平,修改规则为:中摸出的两球所标数字之和为偶数,甲获胜;之和为奇数,乙获胜.
点评:
本题考点: 游戏公平性;列表法与树状图法.
考点点评: 此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.