由条件:(最后是49/50)
1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
=1/2+(1+2)×2÷2/3+(1+3)×3÷2/4+...+(1+59)×59÷2/50
=1/2+2/2+3/2+4/2+...+49/2
=(1+49)×49÷2/2
=612.5.
2+4+6+...+2n
=(2+2n)×n÷2
=n(n+1)
=n²+n
由条件:(最后是49/50)
1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
=1/2+(1+2)×2÷2/3+(1+3)×3÷2/4+...+(1+59)×59÷2/50
=1/2+2/2+3/2+4/2+...+49/2
=(1+49)×49÷2/2
=612.5.
2+4+6+...+2n
=(2+2n)×n÷2
=n(n+1)
=n²+n