设所求角为A,则2sinA=cosB+cosC=2sin(B+C),由和差化积得2cos((B+C)/2)cos((B-C)/2)=4sin((B+C)/2)cos((B+C)/2),所以2sin((B+C)/2)=cos((B-C)/2)
又(cosA)^2=sinBsinC,由积化和差得(cosA)^2=(1/2)(cos(B-C)-cos(B+C)),即
2(cosA)^2-cosA=cos(B-C),且由2sin((B+C)/2)=cos((B-C)/2)得cos(B-C)=2(cos(B-C)/2)^2-1=8(cosA)^2-1=4(1+cosA)-1=3+4cosA,所以 2(cosA)^2-cosA=3+4cosA,解得cosA=-1/2,即A=120