设A是一个N阶实对称矩阵,如果对任意N维向量X,都有
2个回答
我用最简单的证明方法给你
因为任意n维向量X都是AX=0的解
所以 方程的解空间的维数是n
所以矩阵A的秩是n-n=0
只有0矩阵的秩是0
所以A=0
相关问题
设A是n阶实对称矩阵 证明:A是半正定矩阵当且仅当对任意n阶半正定矩阵B都有tr(AB)大于等于
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:任意n维向量B都有//AB//=
设A是n阶实矩阵,b是任意的n维向量,证明线性方程组ATAx=ATb有解.其中AT表示A的转置
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.
当A为n阶反对成矩阵时,对任意n维向量x有xAx’=0怎么证呢?
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ
矩阵与解向量的问题设A是n阶矩阵,对齐次线性方程组AX=0,如果每个n维向量都是方程组的解,则r(A)=?每个n维向量都
设A为N阶实矩阵,且有N个正交的特征向量,证明:1A为实对称矩阵;2存在实数k及实对称矩阵B,A+kE=B^2