dy/dx=y+y^3的通解
z'=-2(z+1)==>dz/(z+1)="}}}'>

1个回答

  • 设z=1/y²,则y²=1/z,y'=-z'/(2yz²)

    代入原方程得-z'/(2yz²)=y+y³

    ==>z'=-2(z+1)

    ==>dz/(z+1)=-2dx

    ==>ln│z+1│=-2x+ln│C│ (C是积分常数)

    ==>z+1=Ce^(-2x)

    ==>1/y²=Ce^(-2x)-1

    ==>[Ce^(-2x)-1]y²=1

    故原方程的通解是[Ce^(-2x)-1]y²=1 (C是积分常数).