设z=1/y²,则y²=1/z,y'=-z'/(2yz²)
代入原方程得-z'/(2yz²)=y+y³
==>z'=-2(z+1)
==>dz/(z+1)=-2dx
==>ln│z+1│=-2x+ln│C│ (C是积分常数)
==>z+1=Ce^(-2x)
==>1/y²=Ce^(-2x)-1
==>[Ce^(-2x)-1]y²=1
故原方程的通解是[Ce^(-2x)-1]y²=1 (C是积分常数).
设z=1/y²,则y²=1/z,y'=-z'/(2yz²)
代入原方程得-z'/(2yz²)=y+y³
==>z'=-2(z+1)
==>dz/(z+1)=-2dx
==>ln│z+1│=-2x+ln│C│ (C是积分常数)
==>z+1=Ce^(-2x)
==>1/y²=Ce^(-2x)-1
==>[Ce^(-2x)-1]y²=1
故原方程的通解是[Ce^(-2x)-1]y²=1 (C是积分常数).