由正弦定理a/sinA=b/sinB=c/sinC=2r得,
a/sin60°=2/sinB=2√3
∴a=2√3*(√3/2)=3
sinB=2/(2√3)=√3/3
∴sinC=sin(A+B)=sinAcosB+cosAsinB=(√3/2)(√6/3)+(1/2)(√3/3)=(3√2+√3)/6
∴c=2√3*[(3√2+√3)/6]=√6+1
∴选A
由正弦定理a/sinA=b/sinB=c/sinC=2r得,
a/sin60°=2/sinB=2√3
∴a=2√3*(√3/2)=3
sinB=2/(2√3)=√3/3
∴sinC=sin(A+B)=sinAcosB+cosAsinB=(√3/2)(√6/3)+(1/2)(√3/3)=(3√2+√3)/6
∴c=2√3*[(3√2+√3)/6]=√6+1
∴选A