f(x)=(x-k)e^x 求f(x)在【0,1】上的最小值

2个回答

  • f '(x)=e^x+(x-k)e^x=(x-k+1)e^x

    令f '(x)=0

    得x-k+1=0

    x=k-1

    ①当k-1≤0,即k≤1时,在x∈【0,1】上恒有f '(x)>0,故f(x)为增函数,在x=0处取得最小值f(0)=-k

    ②当0<k-1<1,即1<k<2时,

    1)当x∈【0,k-1)时,f '(x)<0,f(x)为减函数

    2)当x∈(k-1,1】时,f '(x)>0,f(x)为增函数

    故f(x)在x=k-1处取值最小值f(k-1)=(k-1-k)e^(k-1)=-e^(k-1)

    ③当k-1≥1,即k≥2时,在x∈【0,1】上恒有f '(x)<0,故f(x)为减函数,在x=1处取得最小值f(1)=(1-k)e