^2+c^2-a^2=(b+c)^2-2bc-a^2=a^2--2bc-a^2=-2bc
同理c^2+a^2-b^2=-2ac
a^2+b^2-c^2=-2ab
所以原式=1/(-2bc)+1/(-2ac)+1/(-2ab)
=(a+b+c)/(-2abc)
=0
所以选C
^2+c^2-a^2=(b+c)^2-2bc-a^2=a^2--2bc-a^2=-2bc
同理c^2+a^2-b^2=-2ac
a^2+b^2-c^2=-2ab
所以原式=1/(-2bc)+1/(-2ac)+1/(-2ab)
=(a+b+c)/(-2abc)
=0
所以选C