设x/(x^2+x+1)=1/5,求x^2/(x^4+x^2+1)的值 大虾们帮下忙
x/(x^2+x+1)=1/5
=>两边倒数
(x^2+x+1)/x=5
=>分式分解
x+1+1/x=5
=>两边减一
x+1/x=4
=>两边平方
x^2+2+1/x^2=16
=>两边减二
x^2+1/x^2=14
x^2/(x^4+x^2+1)
=1/[(x^4+x^2+1)/x^2]
=1/[x^2+1+1/x^2]
=1/[(x^2+1/x^2)+1]
=1/[14+1]
=1/15
设x/(x^2+x+1)=1/5,求x^2/(x^4+x^2+1)的值 大虾们帮下忙
x/(x^2+x+1)=1/5
=>两边倒数
(x^2+x+1)/x=5
=>分式分解
x+1+1/x=5
=>两边减一
x+1/x=4
=>两边平方
x^2+2+1/x^2=16
=>两边减二
x^2+1/x^2=14
x^2/(x^4+x^2+1)
=1/[(x^4+x^2+1)/x^2]
=1/[x^2+1+1/x^2]
=1/[(x^2+1/x^2)+1]
=1/[14+1]
=1/15