真数=x^4*(y^2z)^(1/2)/(xyz^3)^(1/2)
=x^4yz^(1/2)/[x^(1/2)y^(1/2)z^(3/2)]
=x^(4-1/2)y^(1-1/2)z^(1/2-3/2)
=x^(7/2)y^(1/2)z^(-1)
所以原式=loga[x^(7/2)]+loga[y^(1/2)]+log[z^(-1)]
=(7/2)loga(x)+(1/2)loga(y)-loga(z)
真数=x^4*(y^2z)^(1/2)/(xyz^3)^(1/2)
=x^4yz^(1/2)/[x^(1/2)y^(1/2)z^(3/2)]
=x^(4-1/2)y^(1-1/2)z^(1/2-3/2)
=x^(7/2)y^(1/2)z^(-1)
所以原式=loga[x^(7/2)]+loga[y^(1/2)]+log[z^(-1)]
=(7/2)loga(x)+(1/2)loga(y)-loga(z)