1)证明:连接OB、OP
∵ 且∠D=∠D
∴ △BDC∽△PDO
∴ ∠DBC=∠DPO
∴ BC∥ OP
∴ ∠BCO=∠POA
∠CBO=∠BOP
∵ OB=OC
∴ ∠O CB=∠CBO
∴ ∠BOP=∠POA
又∵ OB=OA OP=OP
∴ △BOP≌△AOP
∴ ∠PBO=∠PAO
又∵ PA⊥AC
∴ ∠PBO=90°
∴ 直线PB是⊙O的切线
2﹚由(1)知∠BCO =∠P OA
设PB=a ,则 BD=2a
又∵ PA=PB=a
∴ AD=2√2a
又∵ BC∥OP
∴ DC/CO=2
∴ DC=CA=1/2×2√2a=√2a
∴ OA=√2/2a
∴ OP=√6/2a
∴ cos∠BCA=co s∠POA= √3/3