设A,B点(x1,y1)(x2,y2)
代入椭圆的4x1^2+9y1^2=36
4x2^2+9y2^2=36
两式相减得k=y2-y1/x2-x1
=-4(x1+x2)/9(y1+y2)=-4/9
所以直线y-1=-4/9(x-1)
或4x+9y-13=0
设A,B点(x1,y1)(x2,y2)
代入椭圆的4x1^2+9y1^2=36
4x2^2+9y2^2=36
两式相减得k=y2-y1/x2-x1
=-4(x1+x2)/9(y1+y2)=-4/9
所以直线y-1=-4/9(x-1)
或4x+9y-13=0