方程n(n+1)x²-(2n+1)x+1=0的两个根是:
an=1/n、bn=1/(n+1)
则:
an-bn=(1/n)-[1/(n+1)
则:
|a1-b1|+|a2-b2|=[(1/2)-(1/2)]+[(1/2)-(1/3)]=1-(1/3)=2/3
|a1-b1|+|a2-b2|+…+|a2004-b2004|=[(1/1)-(1/2)]+[(1/2)-(1/3)]+…+[(1/2004)-(1/2005)]
=1-(1/2005)
=2004/2005
方程n(n+1)x²-(2n+1)x+1=0的两个根是:
an=1/n、bn=1/(n+1)
则:
an-bn=(1/n)-[1/(n+1)
则:
|a1-b1|+|a2-b2|=[(1/2)-(1/2)]+[(1/2)-(1/3)]=1-(1/3)=2/3
|a1-b1|+|a2-b2|+…+|a2004-b2004|=[(1/1)-(1/2)]+[(1/2)-(1/3)]+…+[(1/2004)-(1/2005)]
=1-(1/2005)
=2004/2005