数列an=2a(n-1)+2^n+(-1),a1=5,若{(an+p)/2^n}为等差数列,求实数p
1个回答
an=2a(n-1)-1 +2^n
an -1 = 2(a(n-1) -1 ) + 2^n
(an-1)/2^n - (a(n-1) -1)/2^(n-1) = 1
p= -1
相关问题
已知数列an满足an=2a(n-1)+2^n-1,a4=81,若数列{(an+p)/2}为等差数列,求p
已知数列{an}中,a1=5,an=2a(n-1)+2^n-1(n∈N*,n≥2) 若数列{an+λ/2^n}为等差数列
已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.
数列an中,a1=1,an+2an*a(n-1)-a(n-1)=0(n>=2) 若bn=1/an 求证bn为等差数列
已知数列{an}满足a1=2,an=3a(n-1)+2,(n>=2),求证数列{a(n)+1}为等差数列
已知数列{an}中,a1=1,an=(2n/n-1)an-1+n,且bn=an/n+k为等比数列,求实数k及数列{an}
数列an满足a1=1,an+1=2(n+1)方*an/an+2n方,数列2n方/an为等差数列,求数列an的通项公式.
数列{an}的前n项和为Sn=npan(n∈N*),且a1≠a2.(1)求常数p的值(2)证明:数列{an}是等差数列.
设数列{an}满足an+1=3an+2n(n∈N*)且a1,a2+5,a3 成等差数列.
已知数列{an}的前n项和为Sn=n p an-n p+n(p为常数,n∈N*)且a1≠a2