y=sin²x+sin2x+3cos²x=sin²x+cos²x+sin2x+2cos²x=1+sin2x+cos2x+1=√2sin(2x+π/4)+2
(1)函数的最小值是2-√2,此时sin(2x+π/4)=-1,即2x+π/4=-π/2+2kπ
所以x=-3π/8+kπ,即此时的x的集合为{x|x=-3π/8+kπ,k∈z}
(2)由π/2+2kπ≤2x+π/4≤3π/2+2kπ得:π/8+kπ≤x≤5π/8+kπ,即函数的单调减区间为
[π/8+kπ,5π/8+kπ]
(3)将函数y=√2sin2x的图像向左平移π/8个单位,得到函数y=√2sin2(x+π/8)即y=√2sin(2x+π/4)的图像,再将函数y=√2sin(2x+π/4)的图像向上平移2个单位就可得到函数y=√2sin(2x+π/4)+2的图像