点P是等边△ABC内一点,且PA=2 PB=2倍根号3 PC=4 求△ABC的边长

1个回答

  • 作∠PAD=60°,且使D、P在AB的两侧.过A作AE⊥BP交BP的延长线于E.

    ∵△ABC是等边三角形,∴AB=AC、∠BAC=60°.

    显然有:∠DAB=∠PAD-∠PAB=60°-∠PAB=∠BAC-∠PAB=∠PAC.

    ∵AD=AP、AB=AC、∠DAB=∠PAC,∴△DAB≌△PAC,∴BD=CP=4.

    ∵AD=AP、∠DAP=60°,∴△DAP是等边三角形,∴∠APD=60°、DP=AP=2.

    ∵BD=4、DP=2、BP=2√3,∴DP^2+BP^2=BD^2,∴∠BPD=90°.

    ∵∠APD=60°、∠BPD=90°,∴∠APE=30°,又AE⊥PE,∴AE=AP/2=1、PE=√3,

    ∴BE=BP+PE=2√3+√3=3√3.

    ∴AB^2=AE^2+BE^2=1+(3√3)^2=1+27=28.

    ∴AB=2√7.

    ∴△ABC的边长是2√7.