求圆心在3x–y=0上,于x轴相切,且被直线x–y=0截得的弦长为2根号7的圆的方程

1个回答

  • 圆心在直线3x-y=0上,y=3x,

    设圆心坐标为(m,3m),

    它与X轴相切,则半径为3m,

    设圆方程为:(x-m)^2+(y-3m)^2=9m^2,

    设直线y=x与圆相交于A(x1,y1),B(x2,y2),

    x1=y1,x2=y2,

    y=x代入圆方程,

    2x^2-8mx+m^2=0,

    根据韦达定理,

    x1+x2=4m,

    x1*x2=m^2/2,

    (x2-x1)^2=(x1+x2)^2-4x1x2=16m^2-2m^2=14m^2,

    (y2-y1)^2=(x2-x1)^2=14m^2,

    (x2-x1)^2+(y2-y1)^2=AB^2=28,

    28m^2=28,

    m=±1,

    则圆方程为:

    (x-1)^2+(y-3)^2=9,

    或:

    (x+1)^2+(y+3)^2=9.

    若用求弦心距法,

    则根据勾股定理,设弦心距=d,

    d^2=(3m)^2-(√7)^2=9m^2-7,

    根据点线距离公式,d=|m-3m|/√2=√2m,

    (√2m)^2=9m^2-7,

    7m^2=7,

    m=±1,

    则圆方程为:

    (x-1)^2+(y-3)^2=9,

    或:

    (x+1)^2+(y+3)^2=9.

    结果相同.