解析(1)过C作CE⊥AB于E,根据抛物线的对称性知AE=BE;由于四边形ABCD是菱形,易证得△OAD≌△EBC,则OA=AE=BE,可设菱形的边长为2m,则AE=BE=1m,在Rt△BCE中,根据勾股定理即可求出m的值,由此可确定A、B、C三点的坐标;x0d(2)根据(1)题求得的三点坐标,用待定系数法即可求出抛物线的解析式;
如图,四边形ABCD是菱形,点D的坐标是(0,√3),以点C为顶点的抛物线y=ax?+bx+c恰好经过x轴的上A,B两点
1个回答
相关问题
-
如图,□ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax 2 +bx+c经过x轴上的点A、B。
-
在平行四边形中,AB=4点D的坐标是(0,8),以点C为顶点的抛物线y=ax的平方+bx+c经过x轴上的点为AB,(1)
-
(2008•宁波)如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c
-
(2007•娄底)经过x轴上A(-1,0)、B(3,0)两点的抛物线y=ax2+bx+c交y轴于点C,设抛物线的顶点为D
-
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3
-
如图,抛物线y=ax^2+bx+c顶点C(1,4),交x轴于A,B两点,交y轴于D,B点坐标(3,0),在抛物线上是否存
-
如图平行四边形OABC,A点坐标为(2,0)抛物线y=ax2+bx+4经过点A、B、C三点,交y轴于D.
-
如图,平行四边形ABCD的两个顶点B,C在抛物线y=ax^2的图像上,点A,D在X轴上,且A坐标为(-5,0),D坐标为
-
如图,抛物线y=ax2+bx+c的顶点坐标P为(1,-4√3/3),交x轴于A.B两点,交y轴于点C(0,-√3)
-
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)