求极限lim(t→x)(sint/sinx)^(x/sint-sinx)

1个回答

  • 是 (sint/sinx)^[x/(sint-sinx)]吧,否则极限是否存在值得怀疑

    e^ln(sint/sinx)^[x/(sint-sinx)] = e^{[x/(sint-sinx)] [ln(sint)-ln(sinx)]}

    {[x/(sint-sinx)] [ln(sint)-ln(sinx)]} = x(lnsint-lnsinx)/(sint-sinx)

    分子分母都趋于0,因此适用罗比达法则,分别对t求导得到

    [xcost/sint ]/cost =x/sinx

    所以原来式子的极限为e^(x/sinx)