n(n+1)=n^2+n
1*2+2*3+3*4+…+n(n+1)
=(1^2+1)+(2^2+2)+(3^2+3)+…+(n^2+n)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
1*2+2*3+3*4+…+11*12
=11*12*13/3
=572
n(n+1)=n^2+n
1*2+2*3+3*4+…+n(n+1)
=(1^2+1)+(2^2+2)+(3^2+3)+…+(n^2+n)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
1*2+2*3+3*4+…+11*12
=11*12*13/3
=572