(1)∵a=1/3
∴f(n)-c=(1/3)^n-c
f(n-1)-c=(1/3)^(n-1)-c
∴an=[f(n)-c]-[f(n-1)-c]
=(1/3)^n-(1/3)^(n-1)
=-2*(1/3)^n
∴ 数列{an}的a1=-2/3 q=1/3
前n项和为(1/3)^n-1
∴ c=1
∵数列{bn}的前n项和Sn满足Sn-S(n-1)=√Sn+√S(n-1)
∴√Sn-√S(n-1)=1
∴数列{√Sn}是首项为1,公差为1的等差数列
∴√Sn=1+(n-1)=n,则Sn=n²
∴bn=Sn-S(n-1)=n²-(n-1)²=2n-1
当n=1时,b1=1也成立
∴an=-2/(3^n),bn=2n-1
(2)∵Tn=1/b1b2+1/b2b3+1/b3b4+……+1/bnb(n+1)
=1/(1×3)+1/(3×5)+1/(5×7)+……+1/[(2n-1)(2n+1)]
=1/2{(1-1/3)+(1/3-1/5)+(1/5-1/7)+……+[1/(2n-1)-1/(2n+1)]}
=1/2[1-1/(2n+1)]>1000/2009
∴1-1/(2n+1)>2000/2009,则1/(2n+1)<9/2009
∴2n+1>2009/9,则n>1000/9
∴最小正整数n是112