△=(4m)^2-16(m+2)≥0,即m≥2或m≤-1
x1 + x2 = - (-4m/4) = m
x1 x2 = (m+2)/4
y=x1^2+x2^2= (x1 + x2)^2 - 2 x1 x2
y = m^2 - (m+2)/2
= m^2 - m/2 - 1
= (m - 1/4)^2 - 17/16 (m≥2或m≤-1)
所以m =-1 时,y取最小值=1/2
△=(4m)^2-16(m+2)≥0,即m≥2或m≤-1
x1 + x2 = - (-4m/4) = m
x1 x2 = (m+2)/4
y=x1^2+x2^2= (x1 + x2)^2 - 2 x1 x2
y = m^2 - (m+2)/2
= m^2 - m/2 - 1
= (m - 1/4)^2 - 17/16 (m≥2或m≤-1)
所以m =-1 时,y取最小值=1/2