在AC上取点E,使AE = AB
∵AD是∠BAC的角平分线,AB = AE,AD = AD
∴△ABD≌△AED
∴BD = ED ,∠B = ∠AED = 2∠C
∵∠AED = ∠C + ∠EDC
∴∠C = ∠EDC
∴EC = ED
∵AD是∠BAD的角平分线,∠BAC : ∠B = 2:1
∴∠B = ∠BAD
∴BD = AD
∴AD =DE = EC
∴AC = AE + EC = AB + AD
在AC上取点E,使AE = AB
∵AD是∠BAC的角平分线,AB = AE,AD = AD
∴△ABD≌△AED
∴BD = ED ,∠B = ∠AED = 2∠C
∵∠AED = ∠C + ∠EDC
∴∠C = ∠EDC
∴EC = ED
∵AD是∠BAD的角平分线,∠BAC : ∠B = 2:1
∴∠B = ∠BAD
∴BD = AD
∴AD =DE = EC
∴AC = AE + EC = AB + AD