1x2x3x4...x2010 尾部几个零?

3个回答

  • 有因数5的个数是:2010÷5=402

    有因数25的个数是:2010÷25=80

    有因数125的个数是:2010÷125=16

    有因数625的个数是:2010÷625=3

    所以一共有:402+80+16+3=501个

    (超级废话解说:)

    从1到10,连续10个整数相乘:

    1×2×3×4×5×6×7×8×9×10.

    连乘积的末尾有几个0?

    答案是两个0.其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个.

    刚好两个0?会不会再多几个呢?

    如果不相信,可以把乘积计算出来,结果得到

    原式=3628800.你看,乘积的末尾刚好两个0,想多1个也没有.

    那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:

    1×2×3×4×…×19×20.这时乘积的末尾共有几个0呢?

    现在答案变成4个0.其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0.

    刚好4个0?会不会再多几个?

    请放心,多不了.要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘.在乘积的质因数里,2多、5少.有一个质因数5,乘积末尾才有一个0.从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了.

    把规模再扩大一点,从1乘到30:

    1×2×3×4×…×29×30.现在乘积的末尾共有几个0?

    很明显,至少有6个0.

    你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数.从它们每个数可以得到1个0;它们共有6个数,可以得到6个0.

    刚好6个0?会不会再多一些呢?

    能多不能多,全看质因数5的个数.25是5的平方,含有两个质因数5,这里多出1个5来.从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5.所以乘积的末尾共有7个0.

    乘到30的会做了,无论多大范围的也就会做了.

    例如,这次乘多一些,从1乘到2010:

    1×2×3×4×…×2010.现在的乘积末尾共有多少个0?

    答案是501个.