a=(2,cos x),b=(sin(x+π/6),-2),函数f(x)=a·b

3个回答

  • (1)f(x)=a·b

    =(2,cos x)·(sin(x+π/6),-2)

    =2sin(x+π/6)-2cosx

    =2[sin(x+π/6)-sin(π/2-x)]

    =2×2cos(2π/3)sin(x-π/6)

    =-2sin(x-π/6)

    =2sin(x+5π/6)

    令x+5π/6 ∈[2kπ-π/2,2kπ+π/2],得x∈[2kπ-4π/3,2kπ-π/3],此为单增区间;

    令x+5π/6 ∈[2kπ+π/2,2kπ+3π/2],得x∈[2kπ-π/3,2kπ+2π/3],此为单减区间;

    (2)由已知有

    5/6=2sin(x+5π/6)

    令θ为满足 sinθ=5/12 的角 解得 x=θ-5π/6;

    则 cos(2x-π/3)=cos(2θ-5π/3-π/3)

    =cos(2θ)

    =1-2sin²θ

    =1-2×(5/12)²

    =47/72

    说明:2[sin(x+π/6)-sin(π/2-x)]

    =2×2cos(2π/3)sin(x-π/6)

    这步用的是和差化积公式:

    sinα-sinβ=sin[(α+β)/2+(α-β)/2] - sin[(α+β)/2-(α-β)/2]

    =sin[(α+β)/2]cos[(α-β)/2] + cos[(α+β)/2]sin[(α-β)/2]

    - sin[(α+β)/2]cos[(α-β)/2] + cos[(α+β)/2]sin[(α-β)/2]

    =2cos[(α+β)/2]sin[(α-β)/2]

    这里的证明过程又用到了另一个公式:

    sin(θ±γ)=sinθcosγ ± cosθsinγ

    这个应该知道吧?