由于 |A|=0,所以 r(A)=n-1
所以 r(A) = n-1.
所以 Ax=0 的基础解系含 1 个解向量.
又因为 AA* = |A|E = 0
所以 A* 的列向量都是 Ax=0 的解
特别是A*的第一列 (A11,A12,...,A1n)^T 是 Ax=0 的非零解.
所以 (A11,A12,...,A1n)^T 是 Ax=0 的基础解系.
方程组的通解为 c(A11,A12,...,A1n)^T.
由于 |A|=0,所以 r(A)=n-1
所以 r(A) = n-1.
所以 Ax=0 的基础解系含 1 个解向量.
又因为 AA* = |A|E = 0
所以 A* 的列向量都是 Ax=0 的解
特别是A*的第一列 (A11,A12,...,A1n)^T 是 Ax=0 的非零解.
所以 (A11,A12,...,A1n)^T 是 Ax=0 的基础解系.
方程组的通解为 c(A11,A12,...,A1n)^T.