一道初三的几何题,麻烦帮下忙!已知,在ΔABC中,∠ACB=90°,点P为AC上一点,过点A作AB的垂线,交BP的延长线

1个回答

  • (1)

    如图①,∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°∴∠PAQ+∠MAN=∠MAN+∠AMN=90°∴∠PAQ=∠AMN∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°∴AQ=MN,∴△AQP≌△MNA∵AN=PQ AM=AP,∴∠AMB=∠APM∵∠APM=∠BPC∠BPC+∠PBC=90°,∠AMB+∠ABM=90°∴∠ABM=∠PBC∵PQ⊥AB,PC⊥BC∴PQ=PC(角平分线的性质),∴PC=AN;=PC

    (2)

    (1)证法一:如图①,∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°∴∠PAQ+∠MAN=∠MAN+∠AMN=90°∴∠PAQ=∠AMN∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°∴AQ=MN,∴△AQP≌△MNA∵AN=PQ AM=AP,∴∠AMB=∠APM∵∠APM=∠BPC∠BPC+∠PBC=90°,∠AMB+∠ABM=90°∴∠ABM=∠PBC∵PQ⊥AB,PC⊥BC∴PQ=PC(角平分线的性质),∴PC=AN;证法二:如图①,∵BA⊥AM,MN⊥AC,∴∠BAM=ANM=90°∴∠PAQ+∠MAN=∠MAN+∠AMN=90°∴∠PAQ=∠AMN∵PQ⊥AB,∴∠APQ=90°=∠ANM∴AQ=MN,∴△PQA≌△ANM∴AP=AM,PQ=AN,∴∠APM=∠AMP∵∠AQP+∠BAM=180°,∴PQ∥MA∴∠QPB=∠AMP∴∠APM=∠BPC,∴∠QPB=∠BPC∴∠BQP=∠BCP=90°,BP=BP∴△BPQ≌△BCP∴PQ=PC,∴PC=AN.(2)解法一:如图②,∵NP=2 PC=3,∴由(1)知PC=AN=3∴AP=NC=5 AC=8,∴AM=AP=5∴AQ=MN==4∵∠PAQ=∠AMN∠ACB=∠ANM=90°∴∠ABC=∠MAN∴tan∠ABC=tan∠MAN==∵tan∠ABC=,∴BC=6∵NE∥KC,∴∠PEN=∠PKC,又∵∠ENP=∠KCP,∴△PNE∽△PCK,∴=,∴CK:CF=2:3,设CK=2k,则CF=3k∴=,NE=k.过N作NT∥EF交CF于T,则四边形NTFE是平行四边形∵NE=TF=k,∴CT=CF﹣TF=3k﹣k=k∵EF⊥PM,∴∠BFH+∠HBF=90°=∠BPC+∠HBF,∴∠BPC=∠BFH∵EF∥NT,∴∠NTC=∠BFH=∠BPCtan∠NTC=tan∠BPC==2,∴tan∠NTC==2,∴CT=k=,∴k=,∴CK=2×=3,BK=BC﹣CK=3∵∠PKC+∠DKC=∠ABC+∠BDK,∠DKE=∠ABC,∴∠BDK=∠PKCtan∠PKC==1,∴tan∠BDK=1.过K作KG∥BD于G∵tan∠BDK=1,tan∠ABC=,∴设GK=4n,则BG=3n,GD=4n∴BK=5n=3,∴n=,∴BD=4n+3n=7n=∴AB==10,AQ=4,∴BQ=AB﹣AQ=6∴DQ=BQ﹣BD=6﹣ 上求解答找找答案吧